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ON THE BRAUER GROUP 
OF A PROJECTIVE CURVE 

BY 

F. VAN OYSTAEYEN AND A. VERSCHOREN* 

ABSTRACT 

Using the torsion-theoretic description of the Brauer group of a projective 
variety, an elegant, direct description of the Brauer group of an arbitrary 
projective curve is established. It is given in terms of reflexive modules over the 
normalized curve and the Brauer groups of the occurring singularities. 

Introduction 

In [15] the authors established that for any regular projective variety X of 

dimension at most two we have Br(X) =/3 ~(R), where R is the homogeneous 

coordinate ring of X and/3~(R ) its so-called relative Brauer group, cf. [16]. This 

gives a module theoretic interpretation of Br(X). In the general case, i.e. X 

singular or of higher dimension, a direct description of Br(X) may still be given, 

but it is then of a torsion-theoretic nature. In this note, however, we show how 

Br(X) may be calculated in terms of relative Brauer groups/3 g if one is willing to 

pass to the normalization .-Y of X at least for X of dimension one. The main 

technique used in this construction is the use of certain Mayer-Vietoris 

sequences for Brauer groups and the explicit calculation of the terms involved. 

These techniques of a cohomological nature are interesting in their own right, 

but we will not go into detail here as this would lead us too far. The material 

presented here is restricted to what is necessary; we have to refer to [15, 17] for 

basic definitions and terminology and to [13] for background on graded rings and 

modules. Let us just specify that all gradations are Z-gradations and that 

throughout R will denote a commutative positively graded ring with unit. 

Let us start by gathering some general results and technicalities that play a 

role in the sequel. We will first derive some elementary results on the integral 

closure of graded domains. 
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PROPOSITION 1. Let S be a commutative graded domain and S the integral 

closure of S in its field of fractions, then the conductor c of S in S is a common 

graded ideal of S and S. 

PROOF. By definition c - - { x  E S; rx @ S for all r E S}. If x E c, let x = 

x~, + �9 �9 �9 + x~. be the homogeneous decomposition of x in S; this is graded too (cf. 

[13]). If r is homogeneous in S, then rx = rxl + ' "  + rx~. with rx @ S yields that 

rx~,,. �9 ", rx~. E S, i.e. x~,,. �9 x~. E c is graded indeed. [] 

COROLLARY 2. Let S be a Gr-local domain and let S be its integral closure. I f  c 

is the conductor of S in S, then S/c  is Gr-local. If  S is a finite S-module, then S is 

Gr-semilocal. 

PROOF. Recall from [13] that S Gr-local means that S possesses a unique 

Gr-maximal ideal ( =  maximal as a graded ideal). Now, by Proposition 1 we 

know that c is graded, hence contained in the unique graded maximal ideal M of 

S; consequently S/c is Gr-local. If S is a finite S-module, then there is only a 

finite number of prime ideals of S lying over M. These prime ideals are 

incomparable, so the graded ones amongst them will be Gr-maximal since M is. 
[] 

PROPOSITION 3. Let R be a positively graded ring and consider a graded ring 

R '  containing R such that R '  is integral over R, then the canonical morphism 

i: R ~ R '  induces a scheme morphism Proj(R')---~ Proj(R).  

PROOF. First note that R '  has to be positively graded too, being integral over 

the positively graded ring R and graded itself. It is easily seen that we only have 

to verify the following: if a graded prime ideal P of R '  contains R+, then P also 

contains R ' .  Now, any x E h ( R ' )  satisfies a relation x" = r l X " - l  + " ' "  + r, for 

some r~ E h(R+). So, if P contains R+, then P contains x", i.e. P contains x. It 

follows that P contains h (R +') hence also R ". [] 

From now on, assume R to be noetherian. 

LEMMA 4. Let c be the conductor of R in R. For any f E h (R+) the following 

properties are valid: 

(4.1) O~(R ) is the integral closure of Q~(R ); 

(4.2) the conductor d of O~(R ) in Q~(R ) is exactly Q~(c ). 

PROOF. Since Q~ is the localization functor obtained by inverting the 

(homogeneous) elements {1, f, f , . . .  }, it is clear that (4.1) follows from general 

localization results, cf. e.g. [2]. 
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Since Qf(c)= Of(R)c, it is easily verified that Of(c)C d. 

Conversely, since R is noetherian, /~ is a finitely generated R-module, say 

= R x ~ + . . . + R x , ,  and we may choose the x , , . . . , x ,  in h(/~). If yf-" Ed,  

then yf-"x, E Of(R) for each i = 1,. �9 x. Hence yx, E Q~(R) and we may select 

m E N large enough such that f"yx~ E R for all i. Consequently f"ytq C R and 

f " y  ~ c, i.e. yf-" ~ Q~(c). Thus d = Q~(c). [] 

COROLLARY 5. Let R be a positively graded noetherian domain, then Proj(/~) 

is the normalization o[ Proj(R). 

PROOF. This follows immediately from the local description of the normaliza- 

tion of a scheme in terms of an affine covering. [] 

PROPOSITION 6. Let R be a positively graded noetherian domain which is 

generated as an Ro-algebra by R~. Let R be the integral closure of R and c the 
conductor of R in R. For P ~ Proj(R) the following statements are equivalent: 

(6.1) 

(6.2) 

(6.3) 

the conductor c is contained in P; 

Q~(R )~, = Ro,) is not integrally closed ; 

O~e(R ) is not integrally closed. 

PROOF. (1) :::> (2). Pick f ~ R , - P ,  then Of(c)oC Of(P) and thus the con- 

ductor c' of Of(/~}, in Of(R)~, is contained in Of(P)o because c' is the part of 

degree zero of the conductor of O;~(/~) in Of(R). Obviously, OI,(R) = 

Q ~,,)(O ~(R )). But now O f(R ) = 0 f(R )off, f- ' ] ,  hence the graded localization 
at Qf(P)  may be obtained by inverting the elements of Of(R)~,-Of(P)~,, so it 

follows that Q~,(R)o = Qo~p~,(Qf(R).,) and also that Q~(R),, is not integrally 

closed. 

(2) ~ (I), Again, choose f E R~ - P. Since O~(R)o is not integrally closed, 

Of(c)oC Qf(P)  follows as in (1) ~ (2). From O f ( R ) =  Of(R)o[f,f ~], it then 
follows that Qf (P)A R = P. 

(2) :ff (3). We want to show that R,,  I is integrally closed iff QI,(R) is 

integrally closed. Let x E h(O~(R)), say of degree - s ,  then x" + r . x" - '+ . . .  + 

r. = 0  for some r~ E Q~(R)~. Pick f ~ Q~(R)~ such that Qf,(R)= R,,~[f,f-~], 
then we obtain a relation of the form (px)+ ([%)(f 'x)"- '+. . .  + (f"~r~)= 0, all 

coefficients in R,,~, hence f~x ~ Rr and x E Q$(R). The converse implication 

may be derived in a similar way. 

Let us now fix a field k and assume that R is a graded k = Ro-algebra 

generated by a finite number of elements of degree 1. Let /~ be the integral 
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closure of R and let c be the conductor o f /~  in R. Assume X = Proj(R)  is a 

curve. We have already seen that X -  Proj(/~) is its normalization and g its 

conductor sheaf Annx(rr,Os~/Ox), where rr : ~ ' ~ X  is the canonical covering. 

Let V resp. I)" denote the closed subscheme of X resp. X determined by c. 

LEMMA 7. With the above notations Pic(17")= 0. 

PROOF. Indeed, by definition Pic( l ) )=  H ' ( -  * = V,0~) and dim I? 0 as f ' ~  

Proj(/~/c), since R/c is Gr-semi-local by Corollary 2. It follows that H ' ( f ' ,  0") -- 
[] 0, cf. [91. 

THEOREM 8. Under the above assumptions there is an exact sequence 

0 - - * B r X ~ B r X O B r  V ~ B r  19. 

PROOF. Our assumptions imply that X may be covered by two open attines 

whose intersection is obviously affine too, X being separated. Similarly for the 

other schemes in the diagram 

< i~ 

X <  V 
i 

But then, for the 6tale topology, there is an exact sequence of sheaves on X, cf. 
[10], 

0---> G,..• --> 7r. G,..~ ~ i .  Gm, v --> (Tri,). G,..~ ---> 0 

which yields a long exact sequence 

�9 �9 �9 --~ Pic( I))--~ H~(X, G,, )--~ HI,(X, Gm ) 0  H~( V, G,,, )--~ HI,(V, G,,). 

Now, using the fact that P ic( lT)=0 by Lemma 7 and the fact that our 

assumptions imply H~,( , G,), = Br, cf. [7, 10], we obtain the desired sequence. 

If one wants to avoid the use of 6tale cohomology and the (deep) results of 

[7,10], a direct, elementary proof may be given as follows (we will only sketch 

it!). If S is an arbitrary positively graded ring, let us denote by P(S) resp. AZ(S) 

the category of locally projective sheaves of S-modules of finite type resp. of 

Azumaya Algebras on Proj(S). It is clear how the Cartesian diagram 

R ~/~ 

R/c  , R /c  
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yields a commutative square 

P(R ) , P(R) 

P(R Ic ) , P(/~ Ic ) 

(use Proposition 3). Let P(/~ ) x~,~/~ P(R/c)  be the associated Cartesian product, 

then passing to an affine covering and applying Milnor's theorem, cf. [1], one 

proves in a rather straightforward way that the canonical functor 

P(R)xp~/c~P(R/c)~P(R)  is an isomorphism, i.e. that (*) is a Cartesian 

diagram. The analogous statement for AZ is valid too. But then, using Lemma 7, 

it suffices to mimic an elementary version of the proof given in [11] for the 

module theoretic analogue. Details are left to the reader. [] 

Recall from [16] that a graded R-algebra A is said to be a pseudo-Azumaya 

algebra if it is reflexive (i.e. A is finitely generated as an R-module and the 

canonical map A --> A ** is an isomorphism of graded R-modules) and the map 

(A @ A )**---* END~ (A) is an isomorphism. Here ENDR (A) denotes the ring 

of graded R-linear endomorphisms of arbitrary degree. Two pseudo-Azumaya 

algebras A and B are said to be similar if we may find reflexive graded 

R-modules P and O and an isomorphism of graded R-algebras 

A @R ENDR(P)--~B @R ENDR (Q). The set of similarity classes of pseudo- 

Azumaya algebras may be endowed with a group structure in the obvious way 

and one thus obtains the so-called relative Brauer group/3 ~ (R) of R. For more 

details, cf. loc. cit. 

PROPOSITION 9. Let Proj(R) be a connected normal projective curve, then 
Br(Proj(R )) =/3~ (F, (/~)). 

PROOF. Cf. [15]. [] 

Let us now calculate Br(V) explicitly. First note that V contains only many 

graded prime ideals, say V={P~, . . . ,P .} .  Note that we do not distinguish 

whether we view a prime P as an element of V+(c) C Proj(R) or as an element of 

Proj(R/c). We may find f , , . . . , f ,  E h(R+) such that X+(f~)={Pi}. Indeed, 

just note that f'lj~]Pj,s Pi since X is a curve, so there is a homogeneous 

f, E f"Ij,,~Pj -P~ and this ~ has the required property. It follows that V is the 

disjoint union of the affines Spec(Of,(R/c)o)=Spec((O~(R)/O~(c))o), so 

Br(V)=O'~=lBr((O~(R)/O~(c))o). We claim that [(Og(R)/O~(c))olro~ is just 

the function field Kx (P), for any P E V. Indeed, first note that for any graded 

ring S we have (So)~od = (Stud)O, SO we obtain 
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[(O ~,(R )/O ,~,(c )),,]r~,d = [(O ~.(R )/O ~.(c ))r~,,],, = [O ~.(R )/rad(O ~.(c ))],, 

= R(,,)/(rad(O~(c)))~,. 

Finally, since the primes in V are the only graded prime ideals of R (different 

from R, )  containing c and since the radical of a graded ideal is graded too, cf. 

[13], we may apply Proposition 1 to conclude that rad(O~(c)) = Of(P),  and 

hence [(Og(R)/O~(c))~,]r,j = Kx (P) indeed. We thus obtain 

THEOREM 10. Let X = Proj(R)  be a connected projective curve; let R be the 

integral closure o[ R and let c be the conductor of R in R. Let V resp. f/ be the 

closed subschemes o[ X resp. .X" = Proj(/~ ) determined by c, then there is an exact 

sequence of abelian groups 

0---~ Br(X)---,/3 ~ ( R ) ~  ( ~  Br(Kx (P))---~ ~ .  Br(Kx (O)). 
p E V  O E V  

PROOF. It suffices to apply the preceding remarks, taking into account the 

fact that Br(R)  = Br(RrCj) for any noetherian ring R, cf. [6]. [] 

EXAMPLE. Let X = Proj(R[X, Y]/(X~-+ y2)). The integral closure of R in 

this case is R [X/y]-~ C[y], which is regular, so /3q~ = Brq~ = 0 (cf. [17]). On 

the other hand, it is clear that c = Ry, since x/y = x ~ R. Since V = {Ry} and 
R/c = R [ x ]  we have B r ( K x ( c ) ) = K x ( c ) =  B r ( R ) = Z / 2 Z  as unique factor. 
Finally R/c = C[y]/(y)  = C, so we obtain Br(X) = Z/2Z. Other examples may be 

found in [17]. 
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